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Workshop Goals

• To describe three common practices 
in data analysis that can lead to 
misleading results 

• To introduce better alternatives
• Present the material so it is useful 

and comprehensible to a wide 
audience



Common Threats to the Validity 
of Statistical Results

• Model-Data Incongruence
– Failure to check if model assumptions are met

• Linear models used with non-linear relationships
• Non-normally distributed errors
• Non-independent errors

• Use of outdated or flawed methods
– Advances in theory, simulation studies that lead to 

the emergence of better strategies
• Repeated measures ANOVA, pair-wise deletion, some 

automatic variable selection techniques



Workshop Plan

• Checking the assumptions of linear 
models and various fixes to problems

• Discuss problems of using models that 
assume independence of errors when 
dependencies exist. 

• Survey good and bad methods to handle 
missing data.



Punch Line 1

• Know the assumptions of the models you 
use.

• Know how robust they are to violations of 
assumptions? 

• Know how to detect the degree to which 
assumptions are met.

• Learn a few strategies for addressing 
problematic violations of assumptions.



Assumptions of Linear 
Regression

1. Linearity of the relationship between 
dependent and independent variables

2. Independence of the errors
3. Homoscedasticity (constant variance) of the 

errors
4. Normality of the error distribution.



“Error” and “Residual” 
refer to the same thing

Y
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Violation of the Linearity 
Assumption

• Leads to incorrect predictions
• Leads you to conclude predictor is less 

associated with an outcome than it is
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lm(formula = b ~ a)

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)   0.9317     0.1273   7.317 7.04e-11 ***
a            -0.4302     0.1298  -3.314  0.00129 ** 

Adjusted R-squared: 0.0916 



How to Detect Violation in 
Linearity

• Look at plots
– Observed versus observed
– Residuals versus predicted values
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How to Fix

• Stay with the linear regression 
framework and 
– Add a regressor which is a non-linear 

function of one of the predictors
– Apply a nonlinear transformation to the 

the dependent and/or independent 
les (Rule of the Bulge)
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d = a^2
lm(formula = b ~ a + d)

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) 0.020642   0.012686   1.627    0.107    
a           0.003107   0.011592   0.268    0.789    
d           0.991819   0.010558  93.944   <2e-16 ***

Adjusted R-squared: 0.9898 



0 1 2 3 4 5

-0
.4

-0
.2

0.
0

0.
2

0.
4

fitted(lm(b ~ a + d))

re
si

d(
lm

(b
 ~

 a
 +

 d
))



Another Quick Example

• A hospital administrator wants to develop 
a prediction equation for long-term 
prognosis using the length of the hospital 
stay

• Two continuous, normally distributed 
variables
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*** Linear Model ***

lm(formula = Prognosis ~ LOS)

Coefficients:

Value Std. Error  t value Pr(>|t|) 

(Intercept)  46.4604   2.7622    16.8202   0.0000

LOS  -0.7525   0.0750   -10.0308   0.0000

Adjusted R-Squared: 0.8856 
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How to Fix

• Stay with the linear regression framework 
and 
– Add a regressor which is a nonlinear function 

of one of the other variables
– Apply a nonlinear transformation to the 

dependent and/or independent variables (Rule 
of the Bulge)

• Use a different parametric model
• Use a distribution-free strategy



Straightening Non-linear Relationships
Rule of the Bulge

(Adapted from Mosteller and Tukey, 1977)
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lm(formula = sqrtprog ~ LOS)

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept)  7.015455   0.201677   34.79 3.24e-14 ***

LOS         -0.081045   0.005477  -14.80 1.63e-09 ***

Adjusted R-squared: 0.9396 
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*** Linear Model ***

lm(formula = Prognosis ~ LOS + LOS^2)

Coefficients:

Value Std. Error  t value Pr(>|t|) 

(Intercept)  55.8221   1.6492    33.8480   0.0000

LOS  -1.7103   0.1248   -13.7044   0.0000

(LOS^2)   0.0148   0.0019     7.9273   0.0000

Adjusted R-Squared: 0.9817 
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Violations of the Normality 
Assumption

• Calculation of confidence intervals and 
significance tests for coefficients are based 
on the assumptions of normally distributed 
errors. 

• If the error distribution is significantly 
non-normal, confidence intervals may be 
too wide or too narrow. 



Common Causes

• The linearity assumption is violated 
• The distributions of the dependent 

and/or independent variables are 
significantly non-normal 



How to Detect Violations of 
Normally Distributed Errors

• Histogram of the residuals
• Normal (QQ) probability plot of the 

residuals. Quantiles of error 
distribution versus the quantiles of a 
normal distribution. 
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glm(formula = SUDcontCare ~ motivation, family = 
gaussian)

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept)  2.02292    0.05290  38.243   <2e-16 ***

motivation 0.02725    0.01348   2.021   0.0433 *  



Histogram of resid(glm(SUDcontCare ~ motivec, family = gaussian, data = cocxl))

resid(glm(SUDcontCare ~ motivec, family = gaussian, data = cocxl))
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How to fix Violations of 
Normally Distributed Errors

• Fix non-linearity problems
– Transformations
– Scrutinize outliers
– Use a non-linear model (e.g., polynomial)

• Use a different Parametric Model that fits your 
data
– Poisson Regression (counts of rare events)
– Negative  Binomial (often better with overdispersion)

• Use a non-parametric Model
– bootstrap



Generalized Linear Model
normal

Linear Regression
ANOVA

T-test
ACOVA

Logistic Regression
Chi-Squared

Binary/Binomial

Poisson, Zero-Inflated
Poisson, Negative
Binomial, Gamma

Counts, big skew,
many zeros



glm(formula = SUDcontCare ~ motivation, family = 
poisson)

Coefficients:

Estimate Std. Error z value Pr(>|z|)    

(Intercept)  0.70303    0.01227  57.281  < 2e-16 ***

motivation   0.01410    0.00327   4.314 1.60e-05 ***

Note: In terms of proportion of deviance “explained”,  
this model is 25% better than the Gaussian model



Non-parametric, Distribution-
free (not assumption free) 

Methods
• Ranks, signs, etc
• Bootstrap Regression

– Estimate the distribution of the parameters 
by resampling with replacement.

– Construct confidence intervals based on 
the empirical distribution



Summary Part 1

• Know the assumptions of the models you 
use

• Check for Model/Data incongruence
• If incongruence is found, adjust your data 

and/or your model
• Know your options 



Suggested Resources for Learning About 
Linear Models and Alternatives

• Ramsey, F. L., & Schafer, D. W. (1997). The Statistical 
Sleuth. Belmont, CA: Duxbury Press. 

• Agresti, A. (1996). An introduction to categorical data 
analysis. New York: Wiley.

• Montgomery, D., & Peck, E. (1992). Introduction to 
Linear Regression Analysis (2nd ed.). New York, NY: 
Wiley.

• Neter, J., Kutner, M. H., Nachtsheim, C. J., & 
Wasserman, W. (1996). Applied Linear Statistical 
Models (4th ed.). Chicago: Irwin.

• Efron, B., & Tibshirani, R. (1993). An Introduction to the 
Bootstrap. Boca Raton, FL: Chapman & Hall.



Part 2: Correlated Data: 
When Errors are Not Independent



Common Data Structures

• Multi-Level Organizational Data
– Patients within providers within facilities



Multi-Level Organizational Data

C3C1 C2 C6C4 C5

PT1_3 PTN_3 PT1_5 PTN_5



Common Data Structures

• Repeated-Measures on Individuals
– Monthly measurement of disease status



Repeated-Measures on Individuals

Y

Time



Common Data Structures

• Both within person and within organization 
clustering



The Problem

• Common statistical tools have no good 
way of dealing with multi-level details 
(correlated errors, sample size, variances)
– OLS Regression
– ANOVA
– T-tests

• It matters – failing to attend to these 
details can give very wrong results. 



Old (and usually bad) Solution

• To aggregate or disaggregate data to one 
level and apply familiar statistical models. 



Example
• Study: What are the clinic characteristics (e.g., open on 

weekends) that influence patient outcomes?
– Sample is 700 patients in 20 clinics

• Force all information to the patient-level
– Confounds patient and clinic sample sizes
– Radically reduced the SE of parameter estimates
– Leads to more null-hypothesis rejection and 

inappropriately narrow CIs

• Force all information to the Clinic-level
– Lose power
– Lose information about within clinic variability and 

size



Mixed Effects Regression Keeps Track 
of Multi-level Details and Allow for 

Dependencies
• Allows you to

– address single-level questions while 
accounting for dependencies at other levels.

– appropriately test interesting and important 
multi-level hypotheses.
• Clinic characteristics that influence patient 

outcomes



Punch Line 2

• Multi-level thinking is powerful and 
important conceptually and statistically

• Need to use models that keep track of 
multi-level details
– Sample size
– Variance partition
– Correlated errors



Example: Cross-Level Question

• 2931 SUD patients in 15 clinics
• Clinics have been rated for level of 

guideline concordant care (0-10)
• Question: Does guideline concordant care 

influence patient engagement in 
continuing care (“aftercare”; also a 
normally distributed variable)



Analysis that Confounds Clinic and 
Patient Sample Size

glm(formula = Engage ~ Concord, family = gaussian)

Coefficients:
Estimate Std. Error t value Pr(>|z|)    

(Intercept)  -1.4062     0.1567  -8.973   <2e-16 ***
Concord       0.2311     0.0221  10.457   <2e-16 ***



Variance Partitioning in Regular 
Regression
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Variance Partitioning in Multi-
Level Regression

ij 00 01 j j ij

2 2
j µ i e

y =  +  (CONCORD)  + µ + e

where µ ~ N(0, σ ),   e ~ N(0, σ )

γ γ



Analysis that Keeps Track of Levels 

lme(ENGAGE ~ CONCORD , random  = ~ 1  | SITE, family =  
gaussian)

Random effects:
Formula: ~1 | SITE

(Intercept) Residual
StdDev:   0.7021689 2.036858

Fixed effects: ENGAGE ~ CONCORD 
Value Std.Error   DF    t-value p-value

(Intercept) -1.4627475  1.609469 2916 -0.9088384  0.3635
CONCORD       0.2145252  0.225683   13  0.9505596  0.3592
---------------------------------------------------------
Concord      0.2311     0.0221           10.457   <2e-16 ***



Example: Level-1 Question with 
Level-2 Grouping

• 2931 SUD inpatients in 15 clinics
• Question: Do SUD inpatients’ ratings of 

staff control influence engagement in 
continuing care? 

• Note: Patients ratings within each site are 
likely to be correlated. 



Not Accounting for Clustering 
within Clinics

Call:
glm(formula = ENGAGE ~ PRCONTROL, family = gaussian)

Coefficients:
Estimate Std. Error z value Pr(>|z|)    

(Intercept) -0.13774    0.08450  -1.630    0.103    
PRCONTROL 0.04965    0.01178   4.214 2.50e-05 ***



Accounting for Clustering within 
Clinics

lme(ENGAGE ~ PRCONTROL , random  = ~ 1  | SITE, family =  gaussian)

Random effects:
Formula: ~1 | ISITE

(Intercept) Residual
StdDev:   0.7253934 2.037000

Rho = ICC = 0.11 variance explained by the grouping

Fixed effects: Engage ~ PRCONTROL
Value  Std.Error   DF    t-value p-value

(Intercept)  0.11391253 0.27017976 2915  0.4216176  0.6733
PRCONTROL -0.00823548 0.02688099 2915 -0.3063682  0.7593

Number of Observations: 2931
Number of Groups: 15 
---------------------------------------------------------
PRCONTROL    0.04965    0.01178           4.214  2.50e-05 ***



Mixed Effects Regression Models, 
aka HLM, random coefficients 

models, growth curve models, etc.
• A very flexible framework to handle multi-level 

data and questions.
• Allow various link functions (normal, binomial, 

possion, etc)
• Can explicitly model the covariance structure
• Handle unbalanced data and variable 

assessment schedules
• All cases can be included



Multi-level Models for Longitudinal 
Data

• Observations are clustered within 
individuals

• Individual outcome trajectories are 
modeled over time (intercept and slope)

• Questions about intercept/slope 
relationship and the effect of predictors on 
these. 



RCT Example

• Effect of patent-level intervention on 
trajectories of perceived stress

• 252 patients randomized to active 
treatment or usual-care control

• Perceived stress measured at baseline, 
post-intervention (6-weeks) and 20 weeks.



Modeling Individual Trajectories 
Over Time (within-person = Level 1)

0 1 ( )i t i i i t i tY t i m e eπ π= + +

 is the outcome at time t for patient itiY

( )  is 0 at intake ittime

0   is the initial status of patient i iπ

1  is the rate of change for patient iiπ

 is the error associated with patient i at time tite



Y

Time



Level 2: Between-Person Effects

0 i 0 0 0 i

1 i 1 0 1 1 i 1 i

π =  β +  r
π =  β +  (T rea tm en tG ro u p )  +   rβ

0 0   is  th e  a v e ra g e  in it ia l s ta tu s  fo r  a ll p a tie n tsβ

1 0   i s  t h e  a v e r a g e  s lo p e  f o r  c o n t r o l  g r o u pβ

0 1 and   are errors associated with person i i ir r
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Report

PS

28.3893 122 7.98747
26.3010 103 8.03038
26.7766 94 7.00254
27.2398 319 7.75609
27.5077 130 6.84745
21.5826 115 6.36600
23.2526 95 6.06344
24.3147 340 6.95865

TIME
0
6
20
Total
0
6
20
Total

GROUP
0

1

Mean N Std. Deviation



mixed ps with time group
/print=solution 
/method=ml
/fixed = intercept time time*group 
/random intercept time | subject(id) covtype(ar1).

Estimates of Fixed Effectsa

26.66743 .3750490 465.046 71.104 .000 25.9304272 27.4044285
-.0027106 .0452618 338.659 -.060 .952 -.0917402 .0863190
-.2355008 .0552943 192.014 -4.259 .000 -.3445631 -.1264385

Parameter
Intercept
TIME
TIME * GROUP

Estimate Std. Error df t Sig. Lower Bound Upper Bound
95% Confidence Interval

Dependent Variable: PS.a. 



Repeated Measures ANOVA

• Requires complete data
• Does not keep track of individuals
• Time*Treatment interaction F-test is often 

a poor operationalization of our research 
questions



Suggested Resources for Learning About 
Mixed Effects Models 

• Pinheiro, J., & Bates, D. (2000). Mixed Effects Models in 
S and S-Plus. New York, NY: Springer.

• Raudenbush, S. W., & Bryk, A. S. (2001). Hierarchical 
Linear Models : Applications and Data Analysis Methods
(2nd ed.). Thousand Oaks, CA: Sage.

• Singer, J. D., & Willett, J. B. (2003). Applied longitudinal 
data analysis: Modeling change and event occurrence. 
London: Oxford University Press.

• Hox, J. J. () Applied Multilevel Analysis. 
http://www.fss.uu.nl/ms/jh/publist/amaboek.pdf



Suggested Resources for Learning About 
Mixed Effects Models

• Another list of books 
http://www.ats.ucla.edu/stat/books/#Multilevel

• UCLA’s Multi-level Modeling Portal 
http://statcomp.ats.ucla.edu/mlm/default.htm

• Software Reviews of Multilevel Analysis 
Packages
http://www.mlwin.com/softrev/index.html

http://www.ats.ucla.edu/stat/books/#Multilevel
http://statcomp.ats.ucla.edu/mlm/default.htm


Covariance Structure
Specification

• Can not only stipulate that data are 
correlated within specific units, but you 
can model this correlation
– Unstructured
– Autoregressive
– Exchangeable



Mixed Effects Regression
• Fixed and Random variables – issue of error 

assumptions
• Fixed and Random Effects – issues of 

generalizability 
• Fixed Coefficients and Random Coefficients 
• We want to estimate the effect of predictor on 

outcomes that generalize beyond the particular 
groups in the study 

• http://www.upa.pdx.edu/IOA/newsom/mlrclass/h
o_randfixd.doc



Missing Data

Part 3



Goals

• Advantages and disadvantage of various 
strategies for addressing missing data. 

• Discuss criteria for evaluating methods 
and specifying “best-practices.”



The Punch Line
Choices regarding how you 
handle missing data may 
dramatically affect the accuracy, 
efficiency (power), and reliability 
of the inferences you make.  



The Purpose of Analysis

• To make valid inferences regarding a 
population of interest.

• To estimate the population means, 
variances, inter-correlations, and error for 
these estimates = multivariate parameter 
space 

• Not to guess what a particular missing 
value would have been. 

θ



Criteria for Choosing a Method

• Allow us to make valid inferences to the 
population of interest

• Account for different status of observed 
and missing values.

• Convenient :
– Easy to implement
– Requires no special software



Properties of Good Missing Data 
Methods (Heitjan & Little, 1991)

• Should condition on observed variables for 
that case.

• Should account for the multivariate nature 
of non-response (consider the overall 
distribution of missingness)

• Should not distort the marginal 
distributions and associations in the 
complete (observed and missing) data



complete obs misY Y Y= +



Evidence of Goodness and Badness of 
Methods: Simulation Studies

• Start with a population and select a 
sample

• “erode” the data into various patterns of 
missingness. 

• Apply an approach to addressing the 
missingness. 

• Compare estimates to known population 
values



Common Approaches to 
Missing Data

• Throw away cases with missing values-
act as if they had never been observed

• Fill-in missing data using some method 
(e.g., mean or regression imputation), and 
then treat them as if they had always been 
observed. 



Taxonomy of Missing Data 
Methods

• Omit Cases
• Imputation

– Single and multiple
– Good and bad methods

• Model-Based Approaches
– Define a model for the complete (missing+observed) 

data and use maximum likelihood or iterative 
simulation to estimate population parameters



Ways Data Can be Missing
Rubin (1976) 

• Missing Completely at Random (MCAR)
– Missing values are a random sample of all values. 

Missingness does not depend on Xs or Y 
• Missing at Random (MAR)

– Missing values can depend on the value of observed 
variables (Xs) but not on the values of Y.

• Missing Not at Random (MNAR)
– Missingness depends on value of Y even after 

relationships with Xs have been accounted for.



Tour de Missing Data Methods

• Complete Case Analysis



Complete Case Analysis (aka 
listwise deletion)

• Do analysis using complete cases. Treat 
omitted data like they never existed. 

• Strengths
– Easy
– Certain intuitive appeal
– Is unbiased and efficient in very restricted 

circumstances (univariate MCAR) 



Complete Case Analysis (Aka 
listwise deletion)

• Limitations
– To the extent that completely observed cases 

differ from cases with missing data (MAR), 
can create serious bias. 

– Inferences are then valid for completers rather 
than the intended population. 

– Fails to keep track of uncertainty due to 
missingness.  



Example: SBP Data
• Two variables: 

X = SBP in Jan 
Y = SBP in Feb

• 1000 datasets of size 50 (complete data) drawn 
from a known parameter distribution. 

• Erode data (Y) into MAR, MCAR, MNAR. 
• 75% Y missing
• See how well methods perform under these 

conditions



Performance of LD for Parameter Estimates 
(Schafer &Graham, 2002)

Parameter MCAR MAR MNAR

125.0 143.3 155.5

24.6 20.9 12.2

.59 .33 .34

125.0Yµ =

25.0Yσ =

.6 0ρ =



Tour de Missing Data Methods

• Complete Case Analysis
• Available Case Analysis



jX jX

Available Case Analysis (aka 
pairwise deletion)

• Use all available data to estimate 
parameters of interest. May use different 
number of cases to estimate various 
parameters. 

• Use every observed value of x to calculate 
SD(x), every observed pair (x,y) to 
calculate cov(x,y). 



Available Case Analysis (aka 
pairwise deletion)

• Strengths same as LD but better because 
it uses more of the data. 

• Weaknesses similar to LD
– Most notably, may be seriously biased
– Because parameters are estimated from 

different cases, difficult to estimate SEs and 
other measures of uncertainty. 



Tour de Missing Data Methods

• Complete Case Analysis
• Available Case Analysis
• Mean Imputation



Mean Imputation

• Replace missing values with the mean for 
that variable

• Strengths
– Easy, built into SPSS
– Certain intuitive appeal
– Does not bias means



Mean Imputation

• Limitations
– Creates bias in variances and covariances

(toward zero). Does not condition on 
observed data for each case

– Fails to keep track of uncertainty due to 
missingness.



Performance of Mean Substitution for 
Parameter Estimates (Schafer &Graham, 

2002)
Parameter MCAR MAR MNAR

125.1 143.5 155.5

12.3 10.6 6.20

.30 .08 .15

125.0Yµ =

25.0Yσ =

.6 0ρ =



Tour de Missing Data Methods

• Complete Case Analysis
• Available Case Analysis
• Mean Imputation
• Regression-based Imputation



Regression-based Imputation
(aka Conditional Mean Imputation)

• Replace missing data with a linear 
combination of other values for that case. 

• Strengths
– Easy, built into SPSS
– Conditions on other values for each case
– Certain intuitive appeal



Regression-based Imputation

• Limitations
– May create bias in variance and covariance 

(away from zero). 
– Fails to keep track of uncertainty due to 

missingness. 
– Even if unbiased, confidence intervals fail to 

cover parameters



Performance of Regression-Based 
Imputation for Parameter Estimates 

(Schafer &Graham, 2002)

Parameter MCAR MAR MNAR

125.2 124.9 151.6

18.2 20.4 8.42

.79 .64 .55

125.0Yµ =

25.0Yσ =

.6 0ρ =



Regression-based Imputation

• Unbiased except for MNAR. 
• Unbiased is good but not enough…

– Proportion of CIs that cover the population 
parameter is an important criteria

• Coverage for LD, CD, MS, and CMS are 
really bad (mostly less than 50%)

• This is why single imputation strategies 
are dangerous.



Tour de Missing Data Methods

• Complete Case Analysis
• Available Case Analysis
• Mean Imputation
• Regression-based Imputation
• Hot Deck Imputation



Hot Deck Imputation

• Class of methods (single or multiple 
imputations)

• Replace missing values with a random 
draw from observed values. 

• A refinement replaces values with a draw 
from neighbors on observed values.



Hot Deck Imputation

• Strengths
– Good at preserving means and variances

• Limitations
– Without significant refinements, measures of 

association are distorted



Tour de (generally not recommended) 
Missing Data Methods

• Complete Case Analysis
• Available Case Analysis
• Mean Imputation
• Regression-based Imputation
• Hot Deck



Tour de Missing Data Methods that 
Have these good characteristics: 

• Keep tract of uncertainty due to missingness.
• Condition on observed values for a case.
• Results in (more) accurate, efficient, and reliable 

inferences under MAR. 
• CIs  are narrow and cover the population 

parameter about 95% of the time. 



Expectation Maximization (EM)

• Algorithm for finding maximum likelihood 
estimates for parametric models when 
data are not fully observed. Uses an 
iterative method to estimate the maximum 
likelihood of parameters of the complete 
data given the observed data and the 
pattern of missingness



( | , )comp obs missP data dataθ

c o m pθ



Expectation Maximization (EM)

• Strengths
– Gives efficient and unbiased estimates of 

multivariate model parameters. 
• Limitations

– Not flexible
– Requires that you work directly with model 

parameters 



Performance of EM for Parameter Estimates 
(Schafer & Graham, 2002)

Parameter MCAR MAR MNAR

124.8 125.2 151.6

24.2 25.5 12.3

.61 .52 .39

125.0Yµ =

25.0Yσ =

.6 0ρ =



Multiple Imputation Methods

• Can use EM (or DA or FIML) as a basis to 
impute M separate complete datasets. 

• Analysis is performed on all M datasets.
• Parameter estimates and SE are 

combined into one inference. 



Multiple Imputation Methods
• Strengths

– One set of imputations can be used for many 
analyses

– Standard analytic tools and software can be used 
once you impute the data sets

– Final inferences incorporate uncertainty due to 
missing data. Good CIs.

– Highly efficient and unbiased even with small M
– MI has better performance than EM in small samples.



Multiple Imputation Methods

• Limitations
– Need special software
– Takes time
– Relatively unknown



Performance of MI for Parameter Estimates 
(Schafer &Graham, 2002)

Parameter MCAR MAR MNAR

124.9 125.3 151.6

25.9 28.7 13.6

.57 .45 .35

125.0Yµ =

25.0Yσ =

.6 0ρ =



Does Proportion of Missing 
Data Influence Choice of 

Method?

• Empirical Question
• Generally, if less than 5% of cases are 

missing data, method doesn’t matter. 



Summary

• Is case deletion ever a good idea? No
• Is single imputation ever a good idea? 

– Yes, when little is to be gained from MI techniques 
and power would be lost in omitting techniques. 

• Less than 5% of cases have missing data.

• Do analysis multiple ways and see if you get 
different results. If yes, pick the most empirically 
justified method (EM or MI). 



Mean cholesterol 
at 14 days

Average 
decrease from 
day 2 to day 
14

Correlation 
between days 2 
and 14

EM Algorithm 222.2329 31.69567 0.4036006

DA Algorithm 221.7628 34.63067 0.3909713

Multiple 
Imputation

222.7931 31.13544 0.3871474

Complete cases 221.47368 38.00 0.392771

Mean imputation 221.47368 32.45489 0.3222948

Last-observation 
carried forward

224.28571 29.64286 0.470174
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Ways Data Can be Missing

• Missing at Random (MAR)
– Missing values can depend on the value of observed 

variables (Xs) but not on the values of Y.
• Missing Not at Random (MNAR)

– Missingness depends on value of Y even after 
relationships with Xs have been accounted for.

• Missing Completely at Random (MCAR)
– Missing values are a random sample of all values. 

Missingness does not depend on Xs or Y 



Examples
• Two Variable data set: Gender has been 

completely observed and aggression has 
missing data. 
– MAR: missingness might depend on gender but not 

level of aggression. 
• If more data is missing for men than women, but randomly 

within each of these distributions…ok
• If level of aggression (beyond that predicted by gender) is 

predictive of missingness, cannot assume MAR.
– MCAR: missingness is independent of gender and 

level of aggression.



How Realistic is MAR? 

• Often need to assume it without being able 
to check (without extensive follow-up). 

• Most recommended methods do well 
under moderate violations of MAR.



Resources

• Schafer, J. L. (1997). Analysis of Incomplete 
Multivariate Data. New York, NY: Chapman & Hall.

• Schafer, J. L., & Graham, J. W. (2002). Missing data: 
Our view of the state of the art. Psychological 
Methods, 7(2), 147-177.

• Schimert, J., Schafer, J. L., Hesterberg, T., Fraley, 
C., & Clarkson, D. B. (2001). Analyzing Data with 
Missing Values in S-Plus. Seattle, WA: Insightful 
Corporation.

• http://www.multiple-imputation.com/



Software (http://www.multiple-imputation.com/)

• Missing Data Library in S-Plus 6. Based upon the work of Joseph L. Schafer, it 
features Gaussian, Loglinear and Conditional Gaussian. Performing multiple 
complete data analysis after multiple imputation, and consolidating results, is 
simplified by using the library. 

• SOLAS for Missing Data Analysis 3.0 is a commercial Windows program by 
Statistical Solutions Limited. Version 3.0 offers new methods for multiple imputation, 
primarily based on Rubin's Chapter 5, pretty interface.

• NORM, CAT, MIX and PAN is software for multivariate imputed by Joseph L. 
Schafer. NORM uses a normal model. CAT uses a loglinear model for categorical 
data. MIX relies on the general location model for mixed categorical and continuous 
data. PAN is geared toward panel data. S-PLUS 3.3 and 4.0 and stand-alone 
Windows software is available.

• SPSS: As far as I can tell, for $400, you get missingness diagnostics and single 
imputations from EM. 

http://www.insightful.com/
http://www.statsol.ie/solas/solas.htm
http://www.stat.psu.edu/~jls/misoftwa.html#top


Is HLM an Missing data 
Method? 

• HLM is regression that handles non-
independence of observations (clustering)

• Can analyses longitudinal data with 
different assessment schedules. 

• Can analyses “unbalanced” clusters
• Keeps track of number and spacing of 

measurements. 
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